4 research outputs found

    The ultra-long GRB 220627A at z = 3.08

    No full text
    Context. GRB 220627A is a rare burst with two distinct γ-ray emission episodes separated by almost 1000 s that triggered the Fermi Gamma-ray Burst Monitor twice. High-energy GeV emission was detected by the Fermi Large Area Telescope coincident with the first emission episode but not the second. The discovery of the optical afterglow with MeerLICHT led to MUSE observations which secured the burst redshift to z'., ='., 3.08, making this the most distant ultra-long gamma-ray burst (GRB) detected to date. Aims. The progenitors of some ultra-long GRBs have been suggested in the literature to be different to those of normal long GRBs. Our aim is to determine whether the afterglow and host properties of GRB 220627A agree with this interpretation. Methods. We performed empirical and theoretical modelling of the afterglow data within the external forward shock framework, and determined the metallicity of the GRB environment through modelling the absorption lines in the MUSE spectrum. Results. Our optical data show evidence for a jet break in the light curve at 1.2 days, while our theoretical modelling shows a preference for a homogeneous circumburst medium. Our forward shock parameters are typical for the wider GRB population, and we find that the environment of the burst is characterised by a sub-solar metallicity. Conclusions. Our observations and modelling of GRB 220627A do not suggest that a different progenitor compared to the progenitor of normal long GRBs is required. We find that more observations of ultra-long GRBs are needed to determine if they form a separate population with distinct prompt and afterglow features, and possibly distinct progenitors.</p

    A search for the afterglows, kilonovae, and host galaxies of two short GRBs: GRB 211106A and GRB 211227A

    No full text
    Context. GRB 211106A and GRB 211227A are two recent gamma-ray bursts (GRBs) whose initial X-ray position enabled us to possibly associate them with bright, low-redshift galaxies (z < 0.7). The prompt emission properties suggest that GRB 211106A is a genuine short-duration GRB and GRB 211227A is a short GRB with extended emission. Therefore, they are likely to be produced by a compact binary merger. However, a classification based solely on the prompt emission properties can be misleading. Aims. The possibility of having two short GRBs occurring in the local Universe makes them ideal targets for the search of associated kilonova (KN) emission and for detailed studies of the host galaxy properties. Methods. We carried out deep optical and near-infrared (NIR) follow-up with the ESO-VLT FORS2, HAWK-I, and MUSE instruments for GRB 211106A and with ESO-VLT FORS2 and X-shooter for GRB 211227A, starting from hours after the X-ray afterglow discovery up to days later. We performed photometric analysis to look for afterglow and KN emissions associated with the bursts, together with imaging and spectroscopic observations of the host galaxy candidates. We compared the results obtained from the optical/NIR observations with the available Swift X-Ray Telescope (XRT) and others high-energy data of both events. Results. For both GRBs we placed deep limits to the optical/NIR afterglow and KN emission. We identified their associated host galaxies, GRB 211106A at a photometric redshift z = 0.64, GRB 211227A at a spectroscopic z = 0.228. From MUSE and X-shooter spectra we derived the host galaxy properties, which turned out to be consistent with short GRBs typical hosts. We also compared the properties of GRB 211106A and GRB 211227A with those of the short GRBs belonging to the S-BAT4 sample, here extended up to December 2021, in order to further investigate the nature of these two bursts. Conclusions. Our study of the prompt and afterglow phase of the two GRBs, together with the analysis of their associated host galaxies, allows us to confirm the classification of GRB 211106A as a short GRB, and GRB 211227A as a short GRB with extended emission. The absence of an optical/NIR counterpart down to deep magnitude limits is likely due to high local extinction for GRB 211106A and a peculiarly faint kilonova for GRB 211227A.</p

    The cosmic buildup of dust and metals: Accurate abundances from GRB-selected star-forming galaxies at 1.7 < z < 6.3

    No full text
    The chemical enrichment of dust and metals in the interstellar medium of galaxies throughout cosmic time is one of the key driving processes of galaxy evolution. Here we study the evolution of the gas-phase metallicities, dust-to-gas (DTG) ratios, and dust-to-metal (DTM) ratios of 36 star-forming galaxies at 1.7 40 000) spectroscopic data, including three new sources, for which at least one refractory (e.g., Fe) and one volatile (e.g., S or Zn) element have been detected at S/N > 3. This is to ensure that accurate abundances and dust depletion patterns can be obtained. We first derived the redshift evolution of the dust-corrected, absorption-line-based gas-phase metallicity, [M/H]tot, in these galaxies, for which we determine a linear relation with redshift [M/H]tot(z) = (- 0.21 ± 0.04)z - (0.47 ± 0.14). We then examined the DTG and DTM ratios as a function of redshift and through three orders of magnitude in metallicity, quantifying the relative dust abundance both through the direct line-of-sight visual extinction, AV, and the derived depletion level. We used a novel method to derive the DTG and DTM mass ratios for each GRB sightline, summing up the mass of all the depleted elements in the dust phase. We find that the DTG and DTM mass ratios are both strongly correlated with the gas-phase metallicity and show a mild evolution with redshift as well. While these results are subject to a variety of caveats related to the physical environments and the narrow pencil-beam sightlines through the interstellar medium probed by the GRBs, they provide strong implications for studies of dust masses that aim to infer the gas and metal content of high-redshift galaxies, and particularly demonstrate the large offset from the average Galactic value in the low-metallicity, high-redshift regime.</p

    Unveiling the enigma of ATLAS17aeu

    Full text link
    Aims. The unusual transient ATLAS17aeu was serendipitously detected within the sky localisation of the gravitational wave trigger GW 170104. The importance of a possible association with gravitational waves coming from a binary black hole merger led to an extensive follow-up campaign, with the aim of assessing a possible connection with GW 170104. Methods. With several telescopes, we carried out both photometric and spectroscopic observations of ATLAS17aeu, for several epochs, between ∼3 and ∼230 days after the first detection. Results. We studied in detail the temporal and spectroscopic properties of ATLAS17aeu and its host galaxy. Although at low significance and not conclusive, we found similarities to the spectral features of a broad-line supernova superposed onto an otherwise typical long-GRB afterglow. Based on analysis of the optical light curve, spectrum, and host galaxy spectral energy distribution, we conclude that the redshift of the source is probably z ' 0.5 ± 0.2. Conclusions. While the redshift range we have determined is marginally compatible with that of the gravitational wave event, the presence of a supernova component and the consistency of this transient with the Ep–Eiso correlation support the conclusion that ATLAS17aeu was associated with the long gamma-ray burst GRB 170105A. This rules out the association of the GRB 170105A/ATLAS17aeu transient with the gravitational wave event GW 170104, which was due to a binary black hole merger
    corecore